

DEPARTMENT OF M&THS TE&CHING PL&N GDCR 2023-24

Teaching Plan Session 2023-24

Class : B.Sc. I Semester Subject : DSC- Mathematics

Paper : Calculus

Paper	: Calculus	1	
S. No.	Teacher	Month	Unit II: Reduction formulae
1.	Dr.	September	
	K.K.Dewangan	October	Definite integrals,
		November	Quadrature, Rectification,
	ter der Leberg Atb	December	Volumes and surfaces of solids of revolution.
	Dr. Hemant	September	Unit I: Successive differentiation. Leibnitz theorem
2.	Kumar Sao	October	Maclaurin and Taylor series expansions,
	Kumar Sao	October	the states Curvature
			Asymptotes, Curvature Tests for concavity and convexity, Points of
		November	Tests for concavity and
	and the second		inflexion, Multiple points, Tracing of curves in Cartesian and polar co-
		December	
			ordinates.
-	Dr. Kavita	September	Unit IV : Scalar and vector product of three vectors.
3.	Dr. Kavita Sakure	~~	Product of four vectors.
1.1.1.1		October	Reciprocal Vectors. Vector differentiation.
			Gradient divergence and curl, Vector integration.
	Sent Merchanise	November	Theorems of Gauss, Green, Stokes and problems
		December	
1.1.1			based on these.
4.	Mr. Ravi	September	Unit III : Limit, continuity and first order
4.	Sonkar	a share to be	partial derivatives
	Juni	October	Higherorder partial derivatives
		November	Change of variables, Euler's
	다니다. 저녁을 다시났어	November	theorem for homogeneous functions
	and the barries and		Taylor's theorem, Total differentiation and
		December	Jacobians.
			Jacobiansi

1.40 Y C

Teaching Plan Session 2023-24

Class : B.Sc. II Semester Subject : DSC- Mathematics Paper : Differential Equations

1º3

1

S. No.	Teacher	Month	
1.	Dr.	Innua	
	K.K.Dewangan	January	Unit II: Second Order Linear Differential Equations Statement or existence and uniqueness theorem for the solution of linear differential equations
		February	General theory of linear differential equations of second order with variable coefficients.
		March	Solutions of homogeneous linear ordinary differential equations of second order with constant coefficients, Method of variation of parameters and method of undetermined coefficients
-		April	Reduction of order, Euler-Cauchy equations, Coupled (Simultaneous) linear differential Equations with constant coefficients.
2.	Dr. Hemant Kumar Sao	January	Unit IV: Higher Order Linear Differential Equations and Application of Differential Equations Orthogonal Trajectories of One-parameter families of curve in a plane.
1	200	February	Simple Harmonic motion
	and the second sec	March	Simple pendulum, gain and loss of oscillations
		April	Oscillations of string, oscillatory electrical circuits
3.	Dr. Kavita Sakure	January	Unit III: First Order Partial Differential Equations Genesis of Partial differential equations (PDE), Concept of linearand non-linear PDEs
1		February	Methods of solution of Simultaneous differential equations of the form: $dx/P(x,y,z) = dy/Q(x,y,z) = dz/R(x,y,z)$
		March	Lagrange's method for PDEs of the form: $P(x,y,z)p+Q(x,y,z)q=R(x,y,z)$, where $p=\partial z/\partial x$ and $q=\partial z/\partial y$; Some special types of equation which can be solved easily other than general method.
		April	Charpit's General Method of Solution of PDE
4.	Mr. Ravi Sonkar	January	Unit I: Basic concepts and genesis of ordinary differential equations, Order and degree of a differential equation
1		February	Linear differential equations and equations reducible to linear form
1		March	Exact differential equations, Integrating factor
		April	First order higher degree equations solvable for x , y and p , Clairaut's form and singular solutions

H 100

CD

the

Teaching Plan Session 2023-24

Class : B.Sc. II Semester Subject : SEC- Mathematics Paper : Probability and Statistics I

S.No.	Month	Unit	
1	January	Unit I	Elementary Theory of Testing of Hypothesis-Origin of theory of sampling, object of sampling, some definitions types of population (or universe), statistical hypothesis, Null hypothesis, Errors of first and second kinds, Critical region (or rejection region) and acceptance region, level of significance, size and power function of test, steps (rules) in solving testing of hypothesis problems, Most powerful test and most powerful critical region
2	February	Unit II	Test of significance based on Chi-square () distribution- Chi-square (2), cells, contigence table, calculation of theoretical frequencies, degree of freedom and constraints, (2)-statistic, (2)-distribution, condition for the application of (2), probability P, tabulation of P for the (2)-distribution, level of significance, (2)-table, test of hypothesis
3	March	Unit III	Test of Significance in Sampling of Attributes (Large Samples): Sampling of attributes, Mean and standard deviation in simple sampling of attributes, Testing the significance for large samples, standard error, Probable error, Approximate formula, Comparison of large samples, standard error of sampling distribution of means, some standard errors, testing the significance of the difference between the means of two large samples, samples from different populations, fiducial limits for unknown mean
4	April	Unit IV	Test of Significance based on t, F and Z-distribution (small samples) Introduction, Estimate of arithmetic mean, estimates of the variance, test of significance based on t-distribution, probability tables, use of t- distribution, testing the ssignificance of the difference between sample means, paired data, fisher's z-test, fisher's z-tables and the significant tests, Snedecor's F-distribution, Snedecor's F-table and significant test, Test of significance of correlation coefficient (small samples), Test of significance of correlation coefficient based on Fisher's z-transformation (large samples), Significance of the difference between two independent correlation coefficients. And Prepare Project

than

Hont No VAS

Teaching Plan Session 2023-24

Class : B.Sc. I Semester Subject : SEC- Mathematics Paper : Probability and Statistics I

S.No.	Month	Unit	
1	September	Unit I	Probability- Event, Sample space, probability of an event, addition and multiplication theorems, Bay's theorem, continuous probability
2	October	Unit II	Probability density function and its application for finding mean, mode, median and standard deviation of various continuous probability distributions, Mathematical expectation, expectation of sum and product of random variables, moment generating function
3	November	Unit III	Theoretical distribution- Binomial, Poisson, normal, rectangular and exponential distributions, their properties and uses.
4	December	Unit IV	Methods of least squares, curve fitting, correlation and regression, partial and multiple correlations (upto three variables only)

Teaching Plan Session 2023-24

Class : B.Sc. III Semester Subject : DSC- Mathematics

Paper : Algebra and Mathematical Methods

S. No.	Teacher	Month	
1.	Dr. Hemant Kumar Sao	September	Unit I: Equivalence relations and Group: Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties. Subgroups, Generators of a group, Cyclicgroup,
		October	Unit I: Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition. Lagrange's theorem and its consequences, Fermat and Euler theorems
		November	Unit II: Normal subgroups. Quotient groups. Homomorphism and isomorphism. Fundamental theorem of homomorphism. Theorems on isomorphism.
		December	Unit II: Rings, Subrings, Integral domains and fields, Characteristic of a ring, Ideal and quotient rings. Ring homomorphism, Field of quotient of an integral domain
2.	Mr. Ravi Sonkar	September	Unit III: Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians
		October	Unit III: Laplace transform -Existence theorems for Laplace transform Linearity of Laplace transform and their properties. Laplace transform of the derivatives and integrals of a function, Convolution theorem inverse Laplace transforms, Solution of the differential equations using Laplace transforms

November	Unit IV: Fourier series -Fourier series, Fourier expansion of piecewise monotonic functions. Half and full range expansions. Fourier transforms (finite and infinite), Fourier integral
December	Unit IV: Calculus of variations -Variational problems with fixed boundaries Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form

Teaching Plan Session 2023-24

Class : B.Sc. III Semester Subject : DSE- Mathematics Paper : Numerical Methods

S. No.	Teacher	Month	
1.	Dr. Kavita Sakure	September	Unit I: Numerical Methods for Solving Algebraic and Transcendental Equations Absolute, relative and percentage errors, General error formula, Solutio of Algebraic and transcendental equations by iteration methods namely; Bisection, method, regula falsi method, iterative method and Newton-Raphson method,
		October	Unit I: Solution of system of linear equations using direct methods such as matrix inversion, Gauss elimination and LU decomposition including some iteration methods namely: Jacobi and Gauss Seidel method.
		November	Unit II: Finite differences, Newton's interpolation formula, Newton's Backward interpolation formula, Forward difference, backward differences, Gauss's forward difference, Gauss backward difference
		December	Unit II: Stirling's formula, Bessel's formula and Langrage's interpolation formula, divided difference and their properties, Newton's general interpolation formula, inverse interpolation formula.
2.	Dr. Hemant Kumar Sao	September	Unit III: Numerical Differentiation and Integration Numerical differentiation, Formula for derivatives, Maxima and minima of tabulated function, Numerical integration using Gauss quadrature formula,
		October	Unit III: Trapezoidal rule, Simpson's 1/3- and 3/8- rules, Weddle's rule, Principle of Least square, Method of least quares, Method of moments.
		November	Unit IV: Numerical Methods of Ordinary Differential
			Equations Picard's method, Taylor series method , Euler's and modified Euler's method, Runge-Kutta methods of 2 nd and 4 th order, , Milne-Simpson method,
		December	Unit IV: Adams- Bashforth-Moulton method, Solution of Boundary value problem of ordinary differential equation using finite difference method.

re-

Teaching Plan Session 2023-24

Class : B.Sc. III Semester Subject : SEC- Mathematics Paper : Logic and Sets

S. No.	Month	Unit	
1	September	Unit I	Set- Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections.
2	October	Unit II	Relation- Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation, Partial ordering relations, and binary relations
3	November	Unit III	Logics- Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, bi-conditional propositions, converse, contra positive and inverse propositions and precedence of logical operators.
4	December	Unit IV	Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

Teaching Plan Session 2023-24

Class : B.Sc. IV Semester Subject : DSC- Mathematics Paper : Real Analysis

S. No.	Teacher	Month	
1.	Dr. Hemant Kumar Sao	January	Unit I: Review of Algebraic and Order properties of R, Idea of countable and uncountable sets, Uncountability of R, bounded and unbounded sets, Completeness property and denseness property of R, Archimedean property, Intervals,
		February	Unit I: Neighbourhood, Interior point, Open set, Limit Point, Illustration of Bolzano Weierstrass theorem for sets, Isolated Point, Derived Set, Closed Set, Adherent Point, Dense
		March	Unit II: Sequences of Real Numbers: Definition and examples, Bounded sequences, Convergence of sequences, Uniqueness of limit, Algebra of limits, Monotone sequences and their convergence, Sandwich rule, Subsequence Subsequential limit, characterisation of a compact set, upper limit and lower limit, Cauchy criterion, Cauchy's theorem on limits
		April	Unit II: Series of Real Numbers: Definition and convergence, Telescopic series, Series with non-negative terms. Tests for convergence (Comparison test, Cauchy n th root test, Ratio test, Root test, Raabe's test, Logarithmic test, De Morgan and Bertrand's test), Abel's and Dirichlet's tests for series, Absolute and conditional convergence, Alternating series and Leibnitz test, Riemann rearrangement theorem.
2.	Mr. Ravi Sonkar	January	Unit III: Limit of a function at a point, Sequential criterion for the limit of a function at a point. Algebra of limits, Continuity at a point and on intervals, Algebra of continuous functions,
		February	Unit III: Discontinuous functions, Types of discontinuity, Intermediate value theorem, Monotone functions and continuity, Uniform continuity.

March	Unit IV: Differentiability: Definition and examples, Geometric and physical interpretations, Algebra of differentiation, Chain rule, Darboux Theorem, Rolle's Theorem, Mean Value Theorems of Lagrange and Cauchy.
April	Unit IV: Application of derivatives: Increasing and decreasing functions, Maxima and minima of functions. Higher order derivatives, Taylor's Theorem and expansion of functions, Leibnitz rule, L'Hopital rule.

Teaching Plan

Session 2023-24

Class : B.Sc. IV Semester Subject : SEC- Mathematics Paper : SCILAB (Project)

S. No.	Month	Unit	
1	January	Unit I	The general environment and the console: Console, file, variable browser and command history. Simple numerical calculations: for particular numbers, for not displaying results and to remind the name of function. The menu bar: Applications, Edit and Control. The editor: opening the editor, writing in the editor, saving and copying into the console, executing the program. The graphics window : opening graphics window, modifying plot and
2	February	Unit II	Variables, assignment and display. Loops: for, whileend, ifthen. Tests: Comparison operator 2 and 3D plots: Basic Plots, To plot segments, Plots of plane of plane curves defined by functions v=f(x). Plots of sequence of
3	March	Unit III Unit IV	Dothes, Plots in 3 dimensions.Matrices and vectors : accessing elements, operations, solving linear systems.Some Useful Functions: sort, length, sum and product, unique, find.Calculation accuracy : computation, display.Useful SCILAB functions in analysis : sqrt, log, exp, abs, int, floor, ceil etc. in probability and statistics: factorial, grand, sum, length, mean, stdev, rand, gsort etc.To display and plot : clf plot surf her redict
4	April	Project	Utilities: format, zeros, string, help, tic, toc etc. Prepare Project

Teaching Plan Session 2023-24

Class : B.Sc. III

Subject : Mathematics

Paper : I (Analysis)

S. No.	Month	Unit	
1.	July	Unit I	Definition and examples of metric spaces. Neighborhoods, Limi points, Interior points, Open and closed sets, Closure and interior. Boundary points, Sub-space of a metric space. Cauchy sequences, Completeness, Cantor's intersection theorem
3.	August	Unit I	Contraction principle, Construction of real numbers as the completion of the incomplete metric space of rationals. Real numbers as a complete ordered field
4.	September	Unit II	Dense subsets. Baire Category theorem. Separable, second countable and first countable spaces. Continuous functions. Extension theorem. Compactness, Sequential compactness. Totally bounded spaces.
5.	October	Unit II	Finite intersection property. Continuous functions and compact sets, Connectedness, Continuous functions and connected sets
6.	November	Unit III	Complex numbers as ordered pairs. Geometric representation of complex numbers. Stereographic projection, continuity and differentiability of complex functions. Analytic functions. Cauchy-Riemann equations. Harmonic functions.
7	December	Unit III Unit IV	Elementary functions. Mapping by elementary functions Mobius transformations. Fixed points, cross ratio. Inverse points and critical mappings. Conformal mappings Fourier series. Fourier expansion of piecewise monotonic function. Convergence, divergence and Oscillation. Abel's and Dirichlet's test. Multiplication of series, Double series Partia derivation and differentiability of real-valued function of two variables. Schwarz and young's theorem, Implicit function theorem
8	January	Unit V	Riemann integral. Integrability of piecewise monotonic function. The fundamental theorem of integral calculus. Mean value theorems o integral calculus. Improper integrals and their convergence comparison tests, Abel's and Dirichlet's tests. Frullani's integral.
9	February	Unit V	Integral as a function of a parameter. Continuity, derivability and integrability of an integral of a function of a parameter

the two

Teaching Plan Session 2023-24

Class : B.Sc. III

Subject : Mathematics

Paper : II (Abstract Algebra)

S. No.	Month	Unit	
1.	July	Unit I	Group-Automorphisms, inner automorphism. Automorphism groups and their computations, Conjugacy relation, Normaliser, Counting principle and the class equation of a finite group.
2.	August	Unit I	Center for Group If prime-order, Abelianizing of a group and its universal property. Sylow's theorems, Sylow subgroup, Structure theorem for finite Abelian groups
3.	September	Unit II	Ring theory-Ring homomorphism. Ideals and Quotient Rings. Field of Quotients of an Integral Domain, Euclidean Rings, Polynomial Rings, Polynomials over the Rational Field. The Eisenstien Criterion, Polynomial Rings over Commutative Rings, Unique factorization domain. R unique factorization domain implies so is R [x1, x2xn] Modules, Submodules, Quotient modules, Homomorphism and Isomorphism theorems
4.	October	Unit III	Definition and examples of vector spaces. Subspaces. Sum and direct sum of subspaces, Linear span. Linear dependence, independence and their basic properties, Basis. Finite dimensional vector spaces. Existence theoremfor bases. Invariance of subspace of a subspace of a finite dimensional vector space. Dimension of sums of subspaces. Quotient space and its dimension.
5.	November	Unit IV	Linear transformations and their representation as matrices. The Algebra of linear transformations. The rank nullity theorem. Change of basis. Dual space, Bidual space and natural isomorphism. Adjoint of a linear transformation.
6.	December	Unit IV	Eigenvalues and eigenvectors of a linear transformation. Diagonalisation. Annihilator of a subspace. Bilinear, Quadratic and Hermitian forms.
7.	January	Unit V	Inner Product Spaces-Cauchy-Schwarz inequality. Orthogonal vectors. Orthogonal Complements, Orthonormal sets and bases.
8.	February	Unit V	Bessel's inequality for finite dimensional spaces. Gram- Schmidt Orthogonalization process.

than

It leo

Teaching Plan Session 2023-24

Class : B.Sc. III

Subject : Mathematics

Paper: III (Programming in C and Numerical Analysis)

S. No.	Month	Unit	
1.	July	Unit I	Programmer's model of a computer. Algorithms. Flow Charts. Data Types.
			Arithmetic and input/output instructions. Decisions control structures.
			Decision statements. Logical and Conditional operators.
2.	August	Unit I	Case control structures. Functions. Recursions. Preprocessors. Arrays.
			Puppetting of strings. Structures. Pointers. File formatting.
3.	September	Unit II	Solution of Equations : Bisection, Secant, Regula Falsi, Newton's Method, Roots of Polynomials : Interpolation : Lagrange and Hermite Interpolation, Divided Differences, Difference Schemes, Interpolation Formulas using Differences Numerical Differentiation. Numerical Quadrature : Newton- Cote's Formulas. Gauss Quadrature Formulas, Chebychev's Formulas
4.	October	Unit III	Linear Equations : Direct Methods for Solving. Systems of Linear
			Equations (Guass Elimination, LU Decomposition, Cholesky
			Decomposition), Iterative Methods (Jacobi, GaussSeidel, Relaxation
			Methods).
			The Algebraic Eigenvalue problem : Jacobi's Method, Givens' Method Householder's Method, Power Method, QR Method, Lanezos' Method
5.	November	Unit IV	Ordinary Differential Equations : Euler Method, Single-step Methods, Runge-Kutta's Method, Multi-step Methods, Milne-Simpson Method, Methods Based on Numerical Integration, Methods Based on Numerical Differentiation, Boundary Value Problems, Eigenvalue Problems.
6.	December	Unit IV	Approximation : Different Types of Approximation, Least Square Polynomial Approximation, Polynomial Approximation using Orthogonal Polynomials, Approximation with Trigonometric Functions, Exponential Functions, Chebychev Polynomials, Rational Functions,
7.	January	Unit V	Monte Carlo Methods Random number generation, congruential generators,
			statistical tests of pseudo-random numbers. Random variate generation, inverse tranform method, composition method, acceptancerejection method, generation of exponential, normal variates, binomial and Poisson variates
8.	February	Unit V	Monte Carlo integration, hit or miss Monte Carlo integration, Monte Carlo integration for improper integrals, error analysis for Monte Carlo integration

H foo

\$

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics Paper : I (Advanced Abstract Algebra (I))

S. No.	Month	Unit	
1.	September	Unit I	Groups-Normal And Subnormal Series, Composition Series, Jordan-Holder Theorem, Solvable Groups, Nilpotent Groups.
2.	October	Unit II	Field Theory: Extension Field, Finite extension, Algebraic element, Algebraic and Transcendental extensions, Roots of polynomials, Splitting field, Separable and inseparable extensions, Normal extensions
3.	November	Unit III	Simple extension, Primitive element, Perfect Field, Finite Fields, Algebraically closed Fields, Automorphisms of extensions
4.	December	Unit IV	Galois Extensions, Fundamental Theorem, Galois Theory. Solution of Polynomial equations by Radicals, Insolvability of the general question of degree 5 by Radicals

H 60

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics Paper : II (Real Analysis (I))

S. No.	Month	Unit	
1.	September	Unit I	Sequence and series of function, Pointwise and uniform Convergence, Cauchy Criterion for uniform convergence, weierstrass M-Test.Abel's and Dirichlet's,Test for Uniform Convergence, Uniform Convergence and Continuity, Uniform Convergence and Differentiation, Weiestrass Approximation Theorem
2.	October	Unit II	Power Series, Uniqueness theorem for Power
	Alter of the states of the		Series, Abel's and Tauber's Theorem. Rearrangements of terms of a Series, Riemann's theorem
3.	November	Unit III	Function of several variables, linear Transformations, Derivatives in an Open Subset of R ⁿ Chain Rule, Partial, Deriavatives, Interchange of the order of differentiation, Derivatives of Higher Orders, Taylor's Theorem, Inverse Function Theoram, Implicit Function Theorem.
4.	December	Unit IV	Jacobians, Extremum problem with Constraints, Lagrange's multiplier method, Differentiation of Integrals, Partitions of unity, Differential Forms, Stoke's Theorem

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics Paper : III (Topology)

S. No.	Month	Unit	
Ŀ	September	Unit I	Countable and uncountable sets The Axiom of choice Cardinal numbers and its arithmetic. Schroeder – Berstein theorem, Cantor's theorem and continumm hypothesis, Zorn's lemma, well ordering theorem, Definition and examples of Topological spaces, Closed sets, Closure, Dense sets, Neighborhoods, Interior, exterior and boundary, Accumulation points and derived sets, Bases and sub-bases, Subspaces and relative topology,
2.	October	Unit II	Alternative methods of defining a topology in terms of Kuratowski Closure Operator and Neighbourhood Systems, Continuous functions and homeomorphism, First and second Countable spaces, Lindeloff's theorems, Separable Spaces, Second countability Separability
3.	November	Unit III Unit IV	Separation axioms; their Characterization and basic properties.Urysohn's lemma, Tietze extension theorem. Compactness- Continuous functions and compact sets. Basic properties of compactness compactness and finite intersection property sequentially and count ably compact sets. Local compactness and one point compactification, Stone – Cech compactification. Compactness in metric spaces.
4.	December	Unit IV	Equivalence of compactness, countable compactness and sequential compactness in metric space.Connected Spaces. Connectedness on the real line. Components. Locally connected spaces

L

\$ton

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics Paper : IV (Complex Analysis (I))

S. No.	Month	Unit	Complex Integration, Cauchy-Goursat Theorem.
1.	September	Unit I	Cauchy's Integral Formula. Higher Order Derivative Morera's Theorem. Cauchy's Inequality and Liouville's Theorem.The Fundamental Theorem of Algebra, Taylor's Theorem. Laurent's Series. Isolated
2.	October	Unit II	Singularities. Meronior piner and Maximum Modulus Principle. Schwarz lemma. The argument Principle .Rouche's Theorem, Inverse
			Function Theorem. Residues. Cauchy's residue Theorem .Billinear
3.	November	Unit III	Residues. Cauchy's residue meetowing Transformations, their Properties and classifications .Definitions and examples of conformal mappings Evaluation of Integrals. Branches of Many Valued
4. December Children Functions With special Reference 7n Spaces of Analytic Function	reactions With special Reference to arg 2, log 2 and		
	Norresta		Zn. Spaces of Analytic Functions Hurwitz's Theorem Montel's Theorem, Riemann Mapping Theorem

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics

Paper : V (Advanced Discrete Mathematics (I))

S. No.	Month	Unit	the Representation and
2.	September October	Unit I Unit II	Formal Logic-Statements, Symbolic Representation Tautologies.Quantifiers, Predicates and validity. Propositional Logic. Semigroups and Monoids-Definitions And Examples of semigroups monoids (Including those pertaining to concatenation Operation).Homomorphism of Semi groups and monoids. Congruence relation and Quotient Semi groups. Sub Semi Groups and submonoids. Direct Products.Basic Homomorphism Theorem. Lattices-Lattice as Partially orderd sets. Their Properties. Lattices and Algebraic systems. Sub lattices, and Homomorphisms. Some Special lattices e.g. Complete,
3.	November	Unit III	Complemented and Distributive Lattices. Boolean Algebras- Boolean Algebras as Lattice.Various Boolean Identities, The Switching Algebra example, Sub algebras. Direct Products and Homomorphisms.Join- Irreducible elements ,Atoms and Minterms. Boolean Forms and their Equivalence. Minterm and Boolean Forms, Sum Of Products Canonical Forms, Minimization of Boolean Functions. Applications of Boolean Algebra to Switching Theory (Using AND, OR, & NOT Gates).The Karnaugh Map Method
4.	December	Unit IV	Grammars and Languages-Phrase- Structure Grammars. Rewriting Rules, Derivation, Sentential Forms.Language generated by a Grammar. Regular, context Free and Context Sensutuve Grammars and Languages.Regular sets Regular Expressions and The Pumping Lemma. Kleene's Theorem Notions of Syntax Analysis, Polish Notations, Conversions of Infix Expression to Polish Notation. The Reverse Polish Notation

the

Teaching Plan Session 2023-24

Class : M.Sc. II Semester Subject : Mathematics Paper : I (Advanced Abstract Algebra (II))

S. No.	Month	Unit	single modules Semi-Simple
1.	January	Unit I	Modules: Cyclic modules. Simple modules, Semi-Simple modules Schedular's Lemma, Free modules, Noetherian and Artinian modules and rings Hilbert basis Theorem, Wedderburn Artin Theorem, Uniform modules, Primary modules, and Noether-Lasker Theorem.
2.	February	Unit II	Linear Transformations: Algebra of Linear Transformations, characteristic roots, matrices and linear transformations
3.	March	Unit III	Form: Similarity of linear transformations. Invariant subspaces, Reduction to triangular forms. Nilpotent transformations, Index of Nilpotency, Invariants of a nilpotent transformation. The primary decomposition theorem, Jordan blocks and Jordon forms
4.	April	Unit IV	Smith normal form over a principal ideal domain and rank. Fundamental structure theorem for finitely generated modules over a principal ideal domain and its applications to finitely generated Abelian groups, Rational canonical form, Generalized Jordan form over and field

H Sao

Teaching Plan Session 2023-24

Class : M.Sc. II Semester Subject : Mathematics Paper : II (Real Analysis (II))

S. No.	Month	Unit	
1.	January	Unit I	Definition and Existence of Riemann- stieltjes integral, Properties of the Riemann- stieltjes integral, Integration and Differentiation, The Fundamental Theorem of calculus, Integration of Vector- valued Functions, Rectifiable Curves
2.	February	Unit II	Lebesgue Outer measurability, Non measurable sets. Regularity, Measurable function Borel and Lebesgue measurability, Non measurable sets, Integration of Non-Negative Function, The General Integral. Integration of Series
3.	March	Unit III	Measures and Outer Measures, Extension of a Measure Uniqueness of Extension, Completion of a measure, Measure space, Integration on Masurable spaces with respect to a measure, Reimann and Lebesgue Integrals
4.	April	Unit IV	The four derivatives, Lebesgue Differentiation theorem, Differentiation and Integration, Function of bounded variation, The LP- Spaces. Convex Functions, Jensen's Inequality. Holder and Minkowski Inequalities, Completeness of LP, Convergence in Measure, Almost uniform Convergence.

Teaching Plan

Session 2023-24

Class : M.Sc. II Semester Subject : Mathematics

Paper : III (General and Algebraic Topology)

S. No.	Month	Unit	
1.	January	Unit I	Tychonoff Product Topology in Terms of standard Sub base and its Characterizations. Projection
	Participants	Nyiés (Comp.)	Maps, Sepration axioms and product Spaces,
			Connectedness and product Spaces, Compactness
			and product Spaces (Tychonoff's theorem),
			Countability and product Spaces
2.	February	Unit II	Embedding and Metrization- Embedding Lemma and Tychonoff Embedding, The Urysohn
			Metrization Theorem. Local finiteness, The
			Nagata- Smirnov Metrization Theorem, Para
			Compactness, The Smirnov Metrization Theorem
	Charles The	These 1 1	Compactness, and
		Unit III	Nets and Filter – Topology and Convergence of
3.	March	Unit III	Nets, Hausdoffness and Nets, Compactness and
		a service s	Nets, Filters and their Convergence, Canonical way
			of Converting nets into filters and vice-versa.
			Ultra-Filters and Compactness
	A	Unit IV	The Fundamental Group and Covering Spaces-
4.	April	Unit I V	Homotopy of paths. The Fundamental group,
			Covering spaces, The Fundamental group of the
			Circle, The Fundamental Theorem of Algebra

the

1º

Teaching Plan Session 2023-24

Class : M.Sc. II Semester Subject : Mathematics Paper : IV (Complex Analysis (II))

S. No.	Month	Unit	
1.	January	Unit I	Weierstrass's Factorisation theorem, Gamma function and its properties, Riemann Zeta Function, Riemann's Functional equation, Runge's theorem. Mittag- Leffler's Theorem,
2.	February	Unit II	Analytic Continuation, Uniqueness of direct analytic Continuation. Uniqueness of Analytic Continuation along a Curve, Power series method of Analytic Continuation Schwarz Reflection, Principle, Monodromy theorem and its Consequences. Harmonic Functions on a Disk
3.	March	Unit III	Harnack's Inequality and Theorem, Dirichelet Problem. Green's Function, Canonical products, Jensen's Formula, Poisson-Jenson Formula, Hadamard's three circles theorem, Order of an entire function, Exponent of Convergence, Borel's theorem. Handamard's Factorization theorem
4.	April	Unit IV	The Range of an Analytic Function, Bloch's Theorem, The Little Picard theorem, Schottky's Theorem, Montel Caratheodory and the great Picard's theorem, Univalent Functions. Bieberbach's Conjecture (Statement only) and the "1/4-Theorem."

then

Teaching Plan Session 2023-24

Class : M.Sc. II Semester Subject : Mathematics

Paper: V (Advanced Discrete Mathematics (II))

S. No.	Month	Unit	
1.	January	Unit I	Graph Theory- Definition of (Undirected) Graphs, Paths, Circuits Cycles, & Subgraphs. Induced Subgraph, Degree of Vertex, Connectivity, Planar Graph and their properties, Trees, Euler's Formula for connected planar Graph, Complete & Complete Biparatite Graph, Kuratowski's Theorem (Statement Only) and its use
2.	February	Unit II	Spanning Trees, Cut-Sets, Fundamental Cut-Sets' and cycle, Minimal Spanning Trees and Kruskal's Algorithm, Matrix Representations of Graphs, Euler's Theorem on the Existence of Eulerian paths and circuits. Directed Graphs, In degree and Out Degree of a Vertex. Weighted undirected Graphs
3.	March	Unit III	Dijkstra's Algorithms, Strong Connectivity & warshall's Algorithm. Directed Trees, Search Tree. Tree Traversals, Introductory Computability Theory Finite state Mechanics and Their Transition Table Diagrams. Equivalence of finite State Machines, Reduced Machines, Homomorphism
4.	April	Unit IV	Finite Automata, Acceptors, Non- deterministic finite Automata and equivalence of its power to that of Deterministic Finite Automata, Moore and mealy Machines, Turing Machine and Partial Recursive Functions

Teaching Plan Session 2023-24

Class : M.Sc. III Semester Subject : Mathematics Paper : I (Integration Theory and Functional Analysis (I))

S. No.	Month	Unit	
1.	July	Unit l	Signed Measure, Hahn Decomposition Theorem, Mutually singular measures, Radon-Nikodym, Labesgue decompositions, Riesz Representation Theorem, Extension Theorem (Caratheodory)
2.	August	Unit II	Product measures, Fubinis Theorem. Differentiation and Integration, Decomposition into absolutely continuous, Baire sets, Baire measure, Continuous function with Compact support, Regularity of Measures on locally Compact spaces
3.	September	Unit III	Normed linear spaces, Banach spaces and examples, Quotient space of Normed linear spaces and its Completeness, Equivalent norms. Riesz Lemma. Basic properties of finite dimensional Normed linear spaces and Compactness
4.	October	Unit IV	Weak convergence and Bounded linear Transformations, Normed linear spaces of Bounded linear Transformations. Dual spaces with examples,
5.	November	Unit IV	Construction Mapping Theorem and its Application, Banach Fixed point Theorem, Picard's Theorem

HE-

Teaching Plan Session 2023-24

Class : M.Sc. I Semester Subject : Mathematics Paper : II (Partial Differential Equations)

S. No.	Month	Unit	
1.	August	Unit I	Examples of P.D.E. Classification, Transport Equation – Initial value Problem, Non-homogeneous Equation, Laplace's Equation- Fundamental Solution, Mean Value Formuae, Properties of Harmonic Functions, Green's Function, Energy Methods, Heat Equation Methods, Wave Equation-Solution by Spherical Means, Non-Homogeneous Function, Energy Methods
2.	September	Unit II	Nonlinear First Order PDE-Complete Integrals, Envelopes. Characteristics, Hamilton Jacobi Equation (Calculus of variations, Hamilton' ODE, Legender Transform, Hopf-Lax Formula, Weak Solutions, Uniqueness) Conservation Laws (Shocks, Entropy Condtion, Lax Oleinik formula, Weak Solutions, Uniqueness, Riemann's Problem, Long Time Behaviour
3.	October	Unit III	Representation of Soutions-seperation of Vaariables, Similarity Solutions (Plane and Travelling Waves, Solitons, Similarity under scaling) Fourier and Laplace Transform, Hopf-Cole Transform, Hodograph and Legendre Transforms, Potential Functions
4.	November	Unit IV	Geometric Optics, Stationary Phase, Homogenization), Power Series (Non-Characteristic Surfaces.
5.	December	Unit IV	Real Analytic Functions, Cauchy-Kovalevskaya Theorem)

the

Teaching Plan Session 2023-24

Class : M.Sc. III Semester Subject : Mathematics

Paper : III (Programming In C (With ANSI Features) Theory And Practical)

S. No.	Month	Unit	
1.	July	Unit I	An Overview of Programming, Programming language, Classification, C Essentials-Program Development, Functions. Anatomy of a C Function. Variables and Constant, Expressions, Assignment Statements. Formatting Source Files. Continuation Character. The Preprocessor.
2.	August	Unit II	Scalar Data Types-Declarations, Different Types of Integers. Different Kinds of Integer Constants. Floation-Point Types. Initialization. Mixing Types. Explicit Conversions-Casts. Enumeration Types. The Void Data Type. Typedefs. Finding The Address of an Object. Ponters
3.	September	Unit III	Control Flow-Conditional Branching. The Switch Statement. Looping. Nested Loops. The break and Continue Statements. The goto statement. Infinite Loops. Arrays-Declaring an Array. Arrays and Memory. Initializing Arrays. Encryption and Decryption.
4.	October	Unit IV	Operators and Expressions-Precedence and Associativity. Unary Plus and Minus operators, Increment and Decrement Operators, Comma Operator, Relational Operator. Logical Operator. Bit- Manipulation Operator, Bitwise Assignment Operators.
5.	November	Unit IV	Cast Operator. Size of Operators. Conditional Operator. Memory Operators.

The and the an

Teaching Plan Session 2023-24

Class : M.Sc. III Semester Subject : Mathematics Paper : IV (Operation Research (I))

S. No.	Month	Unit	
1.	July	Unit I	Operation Research and its Scope . Necessity of
			Operation Research in Industry.
			Linear Programming – Simplex Method. Theory of the
			Simplex Method. Duality and Sensitivity Analysis
2.	August	Unit II	Other Algorithms for Linear Programming - Dual
		1.561	Simplex Method. Parametric Linear Programming.
			Upper Bound Technique
3.	September	Unit III	Interior Point Algorithm. Linear Goal Programming,
			Transportation and Assignment Problems.
4.	October	Unit IV	Network Analysis - Shortest path Problem. Minimum
			Spanning Tree Problem. Maximum Flow I Problem.
			Minimum Cost Flow Problem
5.	November	Unit IV	Network Simplex Method. Project Planning and
			Control I with PERT-CPM.

[ao

Teaching Plan Session 2023-24

Class : M.Sc. III Semester Subject : Mathematics Paper : V (Fuzzy Sets and its Applications (I))

S. No.	Month	Unit	
1.	July	Unit I	Even Sute having definitions, alpha loval sets
	ouly	Unit	Fuzzy Sets, basic definitions, alpha-level sets,
			convex fuzzy sets, Basic operations on fuzzy
			sets, Cartesian product. Algebraic products,
			bounded sum and difference,
2.	August	Unit I	t-norms and t-conorms.
		TI 14 TT	Extension Principle- the Zadeh's extension
		Unit II	principle, Image and inverse image of fuzzy sets.
2	C	** ****	Fuzzy numbers. Elements of fuzzy arithmetic
3.	September	Unit III	Fuzzy relations and fuzzy graphs- Fuzzy
			relations on fuzzy sets, composition of fuzzy
			relations, min-max composition and its
			properties,
4.	October	Unit III	fuzzy equivalence relations, fuzzy compatibility
			relations, fuzzy relation equations, fuzzy graphs,
			similarity relation
5.	November	Unit IV	Possibility Theory, Fuzzy measure, evidence
			theory necessity measure, possibility measure,
			possibility distribution, possibility theory and
			fuzzy sala
6	Describer	TT	fuzzy sets.
0	December	Unit IV	Possibility theory versus probability theory

Teaching Plan Session 2023-24

Class : M.Sc. IV Semester Subject : Mathematics Paper : I (Functional Analysis (II))

S. No.	Month	Unit	
1.	January	Unit I	Uniform Boundedness theorem and some of its consequences.
	1		Open Mapping and Closed Graphs Theorems
2.	February	Unit II	Hahn-Banach Theorem for real linear spaces. Complex linear
2.	rebruary	Cint II	spaces and normed linear spaces. Reflexive spaces. Weak
			Sequention Compactness. Compect Operators. Solvability of
			linear Equations in branch spaces. The closed range Theorem.
2	March	Unit III	Inner product spaces. Hilbert Spaces. Orthonormal sets. Bessel's
3.	March	One m	in quantity. Complete Orthonormal sets and parseveral's
			identity. Structure of Hilbert spaces. Projection Theorem. Riesz
			Representation Theorem.
4.	April	Unit IV	Adjonit of an Operator on a Hilbert spaces. Reflexivity of Hilbert space. Self-adjoint operators, Positive Projection Normal and
			Unitary Operators. Abstract Variational Boundrary-value
			Problem

Teaching Plan Session 2023-24

Class : M.Sc. IV Semester Subject : Mathematics Paper : II (Mechanics)

S. No.	Month	Unit	
1.	January	Unit I	Generalized Coordinates.Holonomic and Non Holonomic
			Systems,Scleronomic and Rhonomic systems.Generalized Potential.Lagrange's Equations of First kind Lagrange's Equations of second kind.Uniqueness of Solution.Energy Equation for Conservative Fields. Hamilton's Variables. Donkin's Theorem. Hamilton Canonical Equations. Cyclic Coordinates. Routh's equations.
2.	February	Unit II	Poisson's Bracket. Poission's Identity. Jacobi-poission's
	Sec. 1997	i Tanti til	Theorem. Motivation Problems of calculus of variations, Shortest Distance. Minimum Surface of Revolution. Brachistochrone Problem. Isoperimetric Problem. Geodesic, Fundamental Lemma of Calculas of variations. Euler's Equations
			for one Dependent Function and its Generalization to (i) 'n' Dependent Functions, (ii) Higher Order Derivatives. Conditional Extremum under geometric, Constrainsts and under integral Constrainsts.Hamilton's Principle. Principles of least Action Poincare Carton Integral Invariant
3.	March	Unit III	Whittaker's Equations. Jacobi Equations. Statement of Lee Hwa Chungs Theorem. Hamilton-Jacobi Equations Theorem. Method of Sepration of variables. Lagrange Bracket.Condition of Canonical Character of a Transformation in Terms of Lagrange Brackets and Poisson Brackets under Canonical Transformations
4.	April	Unit IV	Attraction and Potential of rod, disc, Spherical shells and sphere, Surface Integral of normal Attraction with Application & gauss Theorem). Lap lace and Poisson equation. Work done of self attracting Systems. Distributions for a given Potential. Equipotential Surface. Surface and solid Harmonics. Surface density in terms of Surface harmonics.

the

Teaching Plan Session 2023-24

Class : M.Sc. IV Semester Subject : Mathematics

Paper : III (Programming In C (With ANSI Features) Theory (II))

S. No.	Month	Unit	nuente Prove d'al des traves de la servicia de la constante de la constante de
1.	January	Unit I	Storage Class-Fixed Vs Automatic Duration. Scope of Variables. The Register Specifier. Ansi rules for the syntax and Semantics of the Storage class Keywords
2.	February	Unit II	Point and Semantics of the Storage class Reywords Point and Pointer Arithmetic, Passing pointer as Function Arguments. Accessing Array Elements Through Pointers. Passing Array as Function Arguments. Sorting Algorithms. Strings. Multidimensinal Arrays. Arrays of Pointers, Pointers to Pointers
3.	March	Unit III	Functions-Passing Argument, declaration and Calls. Pointern to Functions. Recursion. The main function, Complex Declarations the C Processor-Macro Substitution, Conditional Compilation. Include Facility. Line Control.
4.	April	Unit IV	Structures and Unions- Structures. Dynamic Memory Allocation. Linked Lists. Unions, Enum Declarations. Inpute of Output-Streams, Buffering. The <studio.h> Head Tie. Error Handling. Opening and Closing a File. Reading and Writing Data. Selecting an I/O Method Unbufferd I/O Random Access. The Standard Library for I/O.</studio.h>

Teaching Plan Session 2023-24

Class : M.Sc. IV Semester Subject : Mathematics Paper : IV (Operations Research (II))

S. No.	Month	Unit	L Bushabilistic Dynamic
1.	January	Unit I	Dynamic Programming- Deterministic and Probabilistic Dynamic Programming, Integer Programming – Branch and Bound Technique
2.	February	Unit II	Game Theory – Two-person, Zero sum Games. Games with Mixed Strategies, Graphic & Solution, Solution by Linear Programming
3.	March	Unit III	Queuing system: Deforministic queuing system, Probability distribution in Queeners, Classification of Queuing models, Poisson Queuing system (See 1/1):(@/FIFO), (M/M/I):(SIRO), (M/M/I):(N/FIFO), Seentory Control: The concept of EOQ, Deterministic inventory problem with no shortages
4.	April	Unit IV	Nonlinear Programing - One/ and Multi- VariableUnconstrained Opttration. Kuhn-Tucker Condition forConstrained Optimtion, Quadratic Programming, SeparableProgramming, ControlProgramming, Non-Convex Programming

ff for

Teaching Plan Session 2023-24

Class : M.Sc. IV Semester

Subject : Mathematics

Paper: V (Fuzzy Sets and its Applications (II))

S. No.	Month	Unit	
1.	January	Unit I	Fuzzy Logic-An overview of classical logic, Multivalued
			logics, Fuzzy propositions. Fuzzy quantifiers. Linguistic
			variables and hedges. Inference from conditional fuzzy
			propositions, the compositional rule of inference
2.	February	Unit II	Approximate Reasoning-An overview of Fuzzy expert
			system. Fuzzy implications and their selection.
			Multiconditional approximate reasoning. The role of
			fuzzy relation equation
3.	March	Unit III	An introduction to Fuzzy Control-Fuzzy controllers.
			Fuzzy rule base. Fuzzy inference engine. Fuzzification
			Defuzzification and the various defuzzification
			methods (the centre of area, the centre of maxima,
			and the mean of maxima methods).
4.	April	Unit IV	Decision Making in Fuzzy Environment-Individual
••			decision making. Multi person decision making.
			Multicriteria decision making. Multistage decision
			making. Fuzzy ranking methods. Fuzzy linear
			programming.

-P